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ABSTRACT

Breast cancer high survival rate led to an increased interest
in the quality of life after treatment, particularly regarding the
aesthetic outcome. Currently used aesthetic assessment meth-
ods are subjective, which make reproducibility and impartial-
ity impossible. To create an objective method capable of be-
ing selected as the gold standard, it is fundamental to detect,
in a completely automatic manner, keypoints in photographs
of women’s torso after being subjected to breast cancer surg-
eries. This paper proposes a deep and a hybrid model to detect
keypoints with high accuracy. Our methods are tested on two
datasets, one composed of images with a clean and consis-
tent background and a second one that contains photographs
taken under poor lighting and background conditions. The
proposed methods represent an improvement in the detection
of endpoints, nipples and breast contour for both datasets in
terms of average error distance when compared with the cur-
rent state-of-the-art.

Index Terms— Keypoint Detection, Deep Neural Net-
works, Aesthetic Evaluation, Breast Cancer.

1. MOTIVATION

Breast cancer is the most frequently diagnosed cancer and the
leading cause of cancer death in women worldwide [1]. Nev-
ertheless, breast cancer is an increasingly treatable disease,
with 10-year survival rate now exceeding 80%. This high sur-
vival rate led to an increased interest in the consequences of
treatment and, in particular, in its aesthetic outcome.

Breast cancer conservative treatment (BCCT) has become
the recommended treatment for early breast cancer with iden-
tical [2] oncological outcomes than mastectomy and with a
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better cosmetic result. Even so, the aesthetic outcome de-
pends on several factors, such as: patient’s breast shape, tu-
mour’s size and location, and surgical and radiotherapy tech-
niques. Current techniques for the aesthetic evaluation of
BCCT outcomes involve, at least partially, subjective assess-
ment made by one or several observers. However, as profes-
sionals involved in the treatment are often present in the panel
of observers, impartiality is not guaranteed. Furthermore,
even specialists tend to disagree regarding assessments result
and, therefore, method’s reproducibility is questionable.

In order to overcome the reproducibility issue of the sub-
jective assessment, some objective methods for the assess-
ment of BCCT were introduced, in which the systems de-
veloped by Fitzal et al. [3] and by Cardoso and Cardoso [4]
represent the most relevant works. Other works, like the ones
presented by Kim et al. [5], and Kim et al. [6], focused on
introducing valuable objective measures for the aesthetic as-
sessment of BCCT but did not present a complete system for
the final aesthetic evaluation. None of the aesthetic evaluation
systems is entirely automatic (they require manual annotation
of some keypoints), they all apply to only the classic con-
servative treatment (leaving out the new surgical techniques)
and they have limited performance. Hence, none of them was
selected as the gold standard.

Referred works point out the relevance of symmetry mea-
surements in the aesthetic assessment, which makes the cor-
rect detection of keypoints fundamental. Thus, a first step
towards achieving the goal of an entirely automatic and objec-
tive framework, capable of being selected as a gold standard,
is the successful detection of fiducial points. In this sense, this
work aims to use deep learning techniques to detect keypoints
in photographs of women after being subjected to BCCT.

2. RELATED WORK AND TRADITIONAL
BASELINE SYSTEM

In this work we implemented a “traditional” computer vision
pipeline based on the current state-of-the-art in the field to



serve as a baseline. This framework will be presented here
along with the related work.

The system uses a multi-step approach: first breast end-
points are detected, which are then used to find the contour
for each breast. Finally, nipples are detected. Common to all
steps is the modelling of images as graphs.

2.1. Graph Concepts

An image can be seen as a graph by considering each pixel a
vertex and pairs of neighbooring pixels as being connected by
arcs. Given a graph, G = (V,A), we say G is weighted if for
each arc, (vi, vj), there is an associated weight, w(vi, vj). A
path from v1 to vn is a sequence of vertices v1, v2, ..., vn such
that (vi, vi+1) is an arc in the graph for all i ∈ {1, 2, ..., n−1}.
The path’s cost is given by

∑n−1
i=1 w(vi, vi+1).

For this application we are interested in finding im-
age edges of different features of the patients body (trunk,
breast and aerola complex). As such, images are modeled as
weighted graphs and arc weights are assigned based on the
gradient magnitude (with small magnitude resulting in higher
arc weight).

2.2. Endpoints, Breast Contour and Nipple Detection

The automatic detection of the breast contour endpoints was
firstly presented by Cardoso et al. [7]. The proposed method,
which was used in our baseline model, assumes photographs
contain only the torso of the patient, as shown in Figure 2a.
The highest point of the trunk contour in each side is assumed
to be an external breast contour endpoint and the internal end-
point is set as the midpoint between the external ones.

First authors compute the stable paths [8] between the
middle and bottom row. Paths with a cost higher than half
of the maximum are discarded. Among the remaining paths,
the closest to the center in each side was considered to be the
trunk contour. This contour was then extended by finding the
longest shortest path which does not contain a long sequence
of consecutive pixels with low gradient magnitude.

Similarly to the previous method, breast contour detection
can also be tackled by solving the shortest path problem. The
first work on automatic detection of fiducial points in pho-
tographs of women after being subjected to breast cancer con-
servative treatment [9] does precisely this. The inner region
of the breast is essentially free of edges. As such, the shortest
path between the endpoints is often the breast contour. This
work was later extended by Sousa et al. which showed that
the introduction of shape priors leads to more accurate mod-
els [10]. They showed non-parametric priors worked better
than parametric ones.

The breast contour detection step is done by the Cardoso
et al.’s method with the changes proposed by Sousa et al..
The introduced shape prior is a non-parametric mask which
corresponds to the union of all breast regions subtracted by

their intersection after an initial endpoint-based scalling and
aligning step.

Finding the nipples’ position is the final task in the pro-
posed framework. We followed the method proposed in [11].
In this approach, nipple candidates with high response to the
Harris corner detector are found on each breast. For each
candidate the shortest closed path around the point is com-
puted. If the candidate is a nipple this path will probably cor-
respond to the areola complex contour. We now have a set of
pairs candidate/contour, from which we are going to extract
one feature from the candidate (Harris corner quality factor)
and three from the associated shortest path (the average mag-
nitude of radial derivative, the shape factor and the equiva-
lent diameter). These are used to train an SVM classifier. In
this work the same methodology was used but closed short-
est paths were computed in polar coordinates and the dataset
was automatically labelled (and not manually) based on the
distance to the true nipple position.

3. PROPOSED MODEL

In the previous section, methods for the automatic detection
of endpoints, breast contour and nipples were presented. Nev-
ertheless, the three tasks are performed separately in all of
those works. In order to improve the state-of-the-art in the
aesthetic classification of BCCT [4], an integrated approach
for keypoints detection could be of major importance. The
computation of all keypoints at the same time may favour the
creation of an end-to-end algorithm for the aesthetic evalua-
tion of breast cancer surgery outcomes. Moreover, the context
information could also be useful to ease the detection of some
keypoints.

Deep Neural Networks (DNN) offer a valuable framework
to achieve this integrated learning. However, as in biomedical
applications we usually deal with small datasets, DNN tend
to overfit severely. There are some approaches that allow to
mitigate the effect of overfitting, for example, transfer learn-
ing and learning an intermediate representation. This latter
idea was explored in other domains in the works done by Be-
lagiannis et al. [12] and Cao et al. [13]. In both works, an
intermediate representation consisting on confidence maps in
relation to the location of the keypoints was created. An ad-
ditional interesting idea also explored in those works was an
iterative process of refinement.

Based on the ideas previously mentioned, we have built
a DNN to automatically detect keypoints in photographs of
patients after being subjected to BCCT (see Figure 2a). As
shown in Figure 1, the architecture of the proposed DNN
comprises two main modules: regression and refinement of
heatmaps, and regression of keypoints.

The first module is what we call as Heatmap Regression
and Refinement. Here the goal is to generate an intermediate
representation consisting on a fuzzy localization for the key-
points we want to detect. This is done in order to help the
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Fig. 1: Proposed iterative DNN architecture.

(a) Keypoints (b) Heatmap

Fig. 2: Example of Ground Truth

regularization process of the DNN. Heatmaps are obtained
using the well-known segmentation model, U-Net [14] - re-
ferred as CNN. Figure 2b presents an example with an im-
age from the dataset and the respective ground truth heatmap
super-imposed.

The second module has as input the multiplication of
the image with the refined output of the previous module
(Output1(n)). The regression of the keypoints is com-
posed of three blocks: VGG16 (without the fully-connected
layers), Conv Layers and Dense Layers. The first block,
VGG16 [15], is pre-trained with ImageNet and then fine-
tuned in our dataset. After VGG16, four convolutional layers
are added to further increase image processing and decrease
size of feature maps before the dense layers. Finally, three
dense layers are used to regress the 74 coordinates, corre-
sponding to the keypoints that make up the breast contour,
endpoints, nipples and supra-sternal notch (Figure 2a). The
proposed fully supervised learning scheme requires not only
the ground truth for the keypoints but also a ground truth for
the heatmaps, which is created considering a Gaussian cen-
tered at each keypoint, with a pre-defined standard deviation.
Regarding the learning process, we have two different terms
in the loss function: heatmap regression, which works here
as a regularization term, and keypoints regression, our goal.
Thus, the loss function is a linear combination between these
two terms (Eq. 1).

L = Lheatmaps + Lkeypoints. (1)

In relation to the regression of the keypoints, the mean
squared error (MSE) was the loss function selected (Eq. 2).
Nk is the number of coordinates, xtargetk the ground truth for
a single coordinate and x̂k the prediction.

Lkeypoints =
1

Nk

∑
∀k

(xtargetk − x̂k)2. (2)

The heatmaps were also learnt using MSE. However, the
heatmaps undergo an iterative process of refinement. Thus,
the complete process is defined by Eq. 3, where j represents
a step in the refinement process and λj represents the weight
given to that step.

Lheatmaps =

Nh∑
j=1

λjLheatmap(j). (3)

Finally, the loss for the heatmap in each step is defined as
follows

Lheatmap(j) =
1

Np

∑
∀p

(xtargetp − x̂p)2, (4)

where Np corresponds to the number of pixels in the im-
age, and xtargetp and x̂p to the ground truth and prediction for
the pixel values, respectively.

4. EXPERIMENTAL EVALUATION

To assess the performance of the proposed method and com-
pare it to the baseline algorithm two datasets were consid-
ered. The first was the PORTO dataset, which is the stan-
dard dataset used in previous works. This is composed of
120 photographs of patients submitted to BCCT. In these im-
ages the torso of the patient is shown in front of a clean and
uniform background. The second was obtained by joining
three smaller sets of photographs: the 120 images of PORTO
dataset, 30 other photographs obtained in similar conditions
(TSIO dataset) and 71 additional images captured in poorer
lighting conditions and without the concern of having a con-
sistent and distinct background (VIENNA dataset, see Figure
3). For each image, 37 ground truth points were available (4
endpoints, 30 points along the breast contours, 2 nipples and
the supra-sternal notch). However, for comparison with the
traditional baseline, the supra-sternal notch was not consid-
ered. For both datasets, training and test sets were obtained
using 5-fold cross-validation.

For the baseline method, the trunk contour extension pa-
rameters were optimized by grid searching on the training
data. For nipple detection 10 candidates were considered per
breast. SVM hyper-parameters were optimized by grid-search
using 3-fold cross validation. Regarding the DNN model,
hyper-parameters controlling dropout rate and strength of data



120 images dataset - Average error distance (pixels)

Model
Endpoints Breast Contour Nipples

mean std dev max mean std dev max mean std dev max
Traditional model 50 41 286 11 19 121 63 83 440

DNN model 30 17 88 18 7 43 56 29 130
Hybrid model 30 17 88 7 9 55 56 29 130

221 images dataset - Average error distance (pixels)

Model
Endpoints Breast Contour Nipples

mean std dev max mean std dev max mean std dev max
Traditional model 81 97 569 36 74 377 123 183 847

DNN model 38 29 188 18 8 56 57 32 195
Hybrid model 38 29 188 12 19 121 57 32 195

Table 1: Average error distance for endpoints, breast contours and nipples measured in pixels.

Fig. 3: VIENNA dataset examples

augmentation were optimized using 5-fold cross validation.
In relation to the number of iterations for the heatmap refine-
ment, different numbers of iterations were tested but the one
that led to the best results was 3. Weights for each sub-loss
function were defined as λj=1 = 0.1, λj=2 = 0.2 and λj=3 =
0.4. Iterative refinement of the keypoints regression module
was also investigated but no promising results were obtained.
The results for the first and second datasets are depicted in
Table 11 and were computed considering the average error
across the five folds. Test images resolution is variable, with
the minimum resolution being (1224 × 1632 pixels) and the
maximum resolution being (2592 × 3888 pixels).

As shown in Table 1, the DNN approach led to an im-
provement on the results obtained in two tasks for the first
dataset and all three tasks for the second. This method is
also faster in inference which can be an important attribute
for clinical practice. The baseline algorithm’s inference time
is in the order of the seconds whereas DNN model’s inference
time is almost instantaneous (it takes a few milliseconds). An-
other important difference between the two approaches is that
the error on the DNN is more regular, while in the baseline
some examples are missed by a wide margin.

Noticing that the inaccuracy in the breast contour of the
baseline method was mainly due to a poor estimation of the
endpoints, we tested a Hybrid model which used the end-
points detected by the DNN model along with the breast con-
tour algorithm of the baseline solution. A better mean error
was obtained when compared to the other two approaches.
Figures 4a and 4b show results obtained using the Hybrid ap-

1Code at https://github.com/wjsilva19/k_detection.

(a) PORTO dataset example (b) VIENNA dataset example

Fig. 4: Test set examples (221 images dataset). The ground-
truth is in blue and the predictions in red.

proach for examples of PORTO and VIENNA datasets.

5. CONCLUSION

The currently used method to evaluate the aesthetic result of
BCCT is subjective and, consequently, it is neither impartial
nor reproducible. Given that the main factor determining the
aesthetic result is symmetry, keypoints detection is of major
importance in the development of a future objective method.

In this work, we propose a DNN model able to improve
the state-of-the-art methods in the detection of keypoints in
photographs of women’s torso after being subjected to BCCT.
Moreover, we also propose a Hybrid model consisting on the
detection of the endpoints, nipples and supra-sternal notch us-
ing the DNN model and finding the breast contour using a
shortest path approach. The models were evaluated in two
datasets: the first composed only of images with a clean and
uniform background and the second with several images taken
under poor lighting conditions and without a consistent and
clean background. In both datasets, the DNN model sur-
passed a baseline solution in all tasks but the breast contour.
The Hybrid approach obtained the best results in terms of
breast contour detection. Future work will focus on comput-
ing the shortest path with a neural network and integrating
the keypoints detection task with the aesthetic assessment in
an end-to-end architecture for classification of breast cancer
treatment aesthetic outcomes.
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