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Abstract— Convolutional Neural Networks (CNN) have be-
come the gold standard in many visual recognition tasks
including medical applications. Due to their high variance,
however, these models are prone to over-fit the data they
are trained on. To mitigate this problem, one of the most
common strategies, is to perform data augmentation. Rotation,
scaling and translation are common operations. In this work
we propose an alternative method to rotation-based data
augmentation where the rotation transformation is performed
inside the CNN architecture. In each training batch the weights
of all convolutional layers are rotated by the same random
angle. We validate our proposed method empirically showing
its usefulness under different scenarios.

I. INTRODUCTION

Over the last few years Convolutional Neural Networks
(CNNs) have gained importance in the field of visual recog-
nition [1]. When enough data is available and the complexity
of the task makes it difficult to use traditional methods, CNNs
have shown remarkable results. Also in medical imaging
these models have been increasingly used [2].

A central aspect of CNNs is their ability to represent
virtually any function by changing their parameterization (i.e.
they are universal approximators). From the bias-variance
trade-off point of view it is easy to see that CNNs are models
with very low bias and high variance [3]. Because of this,
they are prone to learn the idiosyncrasies of the training
data; a well known behaviour called over-fitting. For most
applications this behaviour is undesired as it compromises
the learning of features that generalize to unseen data in
real world scenarios, where the model is likely to be used.
In small datasets – which are typical in medical imaging
applications –, over-fit is therefore more likely to occur.

A common strategy to mitigate this problem is through
data augmentation [4]. This technique aims at expanding
the original training set with transformed inputs, which are
also present in the theoretical population where the data is
sampled from. One of the most common transformations for
data augmentation in medical imaging are rotations.

In this work we propose a method in which rotations
are applied to the model’s parameters instead of the in-
put. Briefly, in each training iteration the weights of all
convolutional layers are rotated by the same random angle.
Through this, we can generate internal representations which
are approximately equal to those obtained by input rotation,
but with the benefit of not having to perform this operation
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on data. Experimental evaluation shows that the proposed
method can substitute data rotation and in some cases lead
to better generalization. Additionally, it is faster to do weight
rather than input rotation making the former more appealing.

II. RELATED WORK

Rotation transformations for data augmentation are com-
mon in image recognition problems, including medical ap-
plications [5]. This process can be done either online where
transformations are calculated during training, or offline
where data manipulation takes place before optimization.
Usually, the justification behind using a set of transforma-
tions for data augmentation is that they occur naturally in the
data; i.e., under reasonable transformation constraints, if x is
a sample taken from an unknown population, a transformed
version of x must also be part of that population. Due to
this, angles in [0◦, 360◦] are sampled for rotation invariant
problems [4] while a smaller range is selected for rotation
variant ones [6]. For angles not multiple of 90◦, rotation leads
to the occlusion of some parts of the image (see Fig. 1).

Some works deal with rotation by designing adequate
model architectures. Examples of these include Group Equiv-
ariant Networks [7] where convolutional layers are made
equivariant to specific families of transformations and Har-
monic Networks [8] where circular harmonics replace regular
CNN filters and each neuron returns a maximal response and
orientation.

Fig. 1: Image rotation can lead to occlusion.

III. METHODS

A. Convolutional Neural Netwoks

Convolutional Neural Networks are feed-forward deep
neural networks that make use of convolutional layers.
Different from fully-connected ones, convolutional layers
share weights across spatial dimensions. Weight sharing
across spatial dimensions leads to important properties in
CNNs which explain their good performance when modeling
natural data [1]. In this work we propose a new method
which manipulates convolutional weights in order to promote
rotation invariance at the model’s output.



Fig. 2: Comparison between the traditional 90◦ rotation-based data augmentation (left) and the proposed method (right).
While in the first case the objects are rotated, our proposed method rotates the model ”observing” the objects.

B. Weight Rotation in Convolutional Layers

Given a 2D image, I , and a convolutional filter W we
denote the convolution operation as:

(I ∗W )(x) =

∫ ∞
−∞

∫ ∞
−∞

I(τ)W (x− τ)dτ1dτ2 (1)

A rotation transformation, Tα, applied to I is defined as
(Tα.I)(x) = I(x′) where x′ is obtained by multiplying x
by the rotation matrix Rα:[

x′1
x′2

]
= Rαx =

[
cosα − sinα
sinα cosα

] [
x1
x2

]
(2)

Our first observation is that the result of the convolution
operation for a rotated image can be obtained by rotating the
filter in the opposite direction, performing the convolution
and then rotating back the result. To prove this we start by
writing the convolution operation for a rotated I .

((TαI)∗W )(x) =

∫ ∞
−∞

∫ ∞
−∞

(TαI)(τ)W (x−τ)dτ1dτ2 (3)

Let τ ′ = Rατ the integral is rewritten as:∫ ∞
−∞

∫ ∞
−∞

I(τ ′)W (x− τ)dτ1dτ2 = (4)∫ ∞
−∞

∫ ∞
−∞

I(τ ′)(T−αW )(x′ − τ ′)dτ ′1dτ ′2 = (5)

(I ∗ (T−αW ))(x′) = (Tα(I ∗ (T−αW )))(x) (6)

Convolutional layers work by performing many 2D convo-
lutions and summing the outputs in an ordered way. The layer
has an input with multiple channels, I, and a weight tensor,
W, with many filters, each with the same number of channels
as I. We denote the operation of a convolutional layer
as f(I,W). Because we are only performing convolutions
and sums, the equivalence previously demonstrated, between
filter rotation and image rotation, applies to convolutional
layers also as long as all channels and filters are rotated by
the same amount and discretization and edge effects are not
considered:

f(Tα.I,W) = Tα.f(I,T−α.W) (7)

Equivalently,

T−α.f(Tα.I,W) = f(I,T−α.W) (8)

Effectively, we can implement this weight rotation op-
eration on convolutional layers as shown in section III-
D. Composing two convolutional layers with this rotation
property, yields:

f(f(I,T−α.W1),T−α.W2) =

T−α.f(Tα.T−α.f(Tα.I,W1),W2) =

T−α.f(f(Tα.I,W1),W2)

(9)

This simply shows that the relation expressed in eq.(8) can
be extended to compositions of convolutional layers as long
as all of them operate with weights rotated by −α.

Although the previous argument disregards discretization
and edge effects, they are present when we deal with digital
images. With both filter rotation and input rotation there
are interpolation errors for all α /∈ [0◦, 90◦, 180◦, 270◦].
In the case of weight rotation these errors can significantly
change the distribution of weights, leading the intermediate
representations of a CNN to be angle-dependent. In this work
we reduced this dependence by normalizing each filter so that
it has the same mean and standard deviation as the original
filter, where α is zero.

C. Rotation-based Weight Regularization

In CNNs, each filter captures some feature in the data,
and these features are often directional. In rotation-invariant
problems, features in data appear with the same frequency
in all orientations. As such, a model which generalizes to
unseen data should be able to capture the same high-level
information regardless of input orientation.

To encourage this, we propose to rotate all filters of the
network by the same random angle, before each forward pass
in training. As shown, if we disregard discretization and edge
occlusion effects, input and filter rotation are equivalent. This
can also be thought of as a generalization of normal training,
where the weights are optimized with a single orientation.
When using rotation-based weight regularization the weights
are trained with a random orientation, which varies in each
iteration.

There are some key differences between the proposed
method and rotation-based data augmentation. The network
is explicitly encouraged to be invariant to filter orientation
rather than input orientation. Additionally, due to image
occlusion and interpolation errors, the numerical results are



equal only for α ∈ [0◦, 90◦, 180◦, 270◦]. While in data
augmentation the interpolation error is only present on the
input, for rotation-based weight regularization, this error is
introduced in all layers of the network. These differences
explain different outputs for the same model when using the
same α, and can lead to different performance.

Based on this differences weight rotation can be advanta-
geous in some real world scenarios: (i) rotating big images
is costly; (ii) the response for multiple rotations of the image
can be computed while transferring only the original data to
the GPU; and (iii) image rotation can lead to occlusion.

D. Weight Rotation Implementation

When rotating a digital image by angles not multiple of
90◦, the integer coordinates of the result lie on non-integer
positions of the original image, requiring an interpolation
method. In this work we used bi-linear interpolation to
obtain the coefficients necessary to rotate the weights. These
coefficients were stored in a tensor, C, which is used by the
model to compute the rotated weights. Each element of this
tensor, ci,j,k,l, holds the coefficient of element (i, j) of the
new filter which is to be multiplied by the element (k, l)
of the reference filter. The weight-rotation operation can be
summarized in Einstein notation:

Ui,j
fi,fo

= Ci,j
k,lW

k,l
fi,fo

(10)

Where U is the rotated weight tensor and W the original
one. Points outside the regular grid are handled by repeating
edge values.

IV. EXPERIMENTS

In this section weight rotation is evaluated in multiple
settings. First the similarities and differences between input
rotation and weight rotation are discussed and experimen-
tally validated on the well-known MNIST dataset. We then
proceed to show the effectiveness of weight rotation regu-
larization on one rotation variant problem and three medical
imaging ones, which are invariant to rotation. A demonstra-
tion of the time-efficiency of weight rotation compared to
data augmentation concludes this section.

A. Similarity between Weight Rotation and Input Rotation

MNIST is a well-known digit recognition dataset. Al-
though recent years’ advances have trivialized this problem,
we use it to illustrate our proposed filter rotation method.

The first observation is that the proposed method is able to
simulate input rotation. For this, we take into consideration
the digits 6 and 9. When rotated by 180◦, the digit 6
resembles a 9 (Fig. 3), and the converse is also true. We
trained a small CNN to classify these two (handwritten)
digits. We then verify the effect of image rotation and weight
rotation on test set accuracy, as shown on Fig. 3.

Both methods gradually lead the model to confuse between
the two classes. When the angle of rotation is 180◦ the
accuracy almost reaches zero, meaning most 6’s are being
classified as 9’s and, conversely, most 9’s are being classified
as 6’s. This percentage is expected as the appearance of the

Fig. 3: Effect on the test set accuracy of image rotation vs
weight rotation. Both methods lead to confusion between 6’s
and 9’s

images belonging to each class, when turned around, closely
resemble the appearance of the images of the other class.
This experiment demonstrates the similarity between weight
rotation and input rotation.

B. Differences between Weight Rotation and Input Rotation

On this experiment we trained a CNN on a variation of the
MNIST dataset, where all samples are rotated by a random
angle. Notice that, although there is some confusion among
some classes – namely 6’s and 9’s –, the problem becomes
rotation invariant, as the class of each sample becomes
independent of its orientation.

In this experiment, we use online rotation-based data
augmentation. Two models are trained, the first one, NS ,
where filters have always the same orientation (α = 0) and
the second, NM , where filter orientation is random for each
batch (α = U(0, 360)). The test-set accuracy for different
rotations of the input and the weights is shown on Fig. 4.

For a model trained with single orientation weights, NS ,
changing weight orientation during inference leads to a much
lower test set accuracy, if interpolation is required. For angles
that are multiple of 90◦, where no interpolation is required,
the accuracy is equal to that of image rotation. As for NM ,
changing filter orientation leads to negligible changes in
accuracy. Although the NS model has a higher accuracy
when no weight rotation is used, if we average the predictions
of NM for 16 orientations the test set accuracy surpasses that
of NS (98.19% against 97.68%). Notice that averaging the
predictions of NS for different weight orientations leads to a
worse test set accuracy. If we also aggregate the predictions
for different image orientations the models compare very
similarly (98.34% for the single orientation model against
98.35% for the multiple orientation one). This experiment
shows that weight rotation and input rotation are not always
interchangeable, as they produce different numerical results
for angles not multiple of 90◦.

C. Regularization on Rotation Variant Problems

In this section we demonstrate the usability of rotation-
based weight regularization on problems where the data
is not independent of orientation. For this we used the



Fig. 4: Test set accuracy for a rotation-invariant variation of
MNIST, as a function of angle of rotation, α, of the input and
of the weights. NS is a model trained with single orientation
weights and NM with random orientation ones.

Fig. 5: Effect of rotation during training on the test set
accuracy, when applied to the input and to the weights.

Small NORB dataset [9], which is composed of photos
of 50 toys equally divided in 5 categories under different
lighting conditions, elevations and azimuths, with no color
or background and with a standard train/test split.

Small NORB images are squared and have side length of
96. For training we took only a central patch with size 64
to ensure that, if the input was rotated, the resulting image
would be contained in the original photo. We adapted the
Resnet-34 [10] model to compensate for the smaller input
size, by removing the initial convolution and max-pooling
layers, each with stride 2. Two models were trained, one with
rotation-based data augmentation and the other with weight
regularization, for different intervals of α ∈ [−αmax, αmax].
Each model was trained for 75 epochs. The test set accuracy
for different values of αmax is shown on Fig. 5.

The results show that, for small values of αmax, increasing
the angle of rotation leads to more accurate models when
weight rotation is used, and to a decrease in accuracy if
rotation is intead performed on the input. Differently from
rotated MNIST, an image generated by rotation is not part of
the theoretical distribution where the data is sampled from,
in the case of Small NORB. Additionally, input rotation can
occlude some parts of the objects during training. These two
factors can explain the good performance of rotation-based
weight regularization against data augmentation.

D. Regularization on Medical Imaging Data

Three publicly available datasets were used to validate the
proposed method on medical images.

TABLE I: Balanced test set accuracies for Medical datasets.

Rotation None Input Weights Both
INbreast 54.87% 62.09% 67.30% 66.67%
ISIC 2017 77.67% 78.70% 80.00% 78.96%
CBIS-DDSM 55.09% 61.26% 60.24% 57.44%

INbreast [11] is a mammographic database with precise le-
sion annotation. To evaluate the performance of the proposed
method patches centered in the annotated masses are taken,
including their surrounding regions. Lesions are considered
positive if they belong to mammograms with a BIRADS (the
standard reporting scale in mammography) score higher than
2. A total of 116 patches were taken. The reported accuracy
was obtained by averaging over 5 splits

CBIS-DDSM [12], [13] is a scanned film mammography
dataset with 2620 images, a standard train/test split and
local lesion annotations. To evaluate our method, a patch
centered in each lesion was taken. This yielded a classifi-
cation problem of 3568 images separated in four classes:
benign masses, malignant masses, benign calcifications and
malignant calcifications.

Finally, the 2017 ISIC challenge data [14], [15] was used.
Three classes are available in the dataset: nevus, seborrheic
keratosis and melanoma, but to simplify the problem, which
is highly unbalanced, we considered only the first two. In
total, we used 1626 images for training and 600 for test.
Contrary to the previous two datasets, where patches were
taken, in this dataset image rotation leads to occlusion.

Our baselines were obtained using Resnet-34 [10], Resnet-
18 and Vgg16 [16] for the INbreast, CBIS-DDSM and
ISIC, respectively. The number of filters in each model was
reduced, as the number of available images is much smaller
when compared to datasets like ImageNet, where these
models are typically used. All models were trained from
scratch using stochastic gradient descent with momentum.
Class weights are used, along with balanced accuracy as an
evaluation metric, since all datasets are unbalaced. Results
are shown in Table I.

Using the proposed regularization method leads to in-
creased accuracy on the test set, demonstrating weight-
rotation is an effective way of increasing model robustness
on rotation-invariant problems. When compared to rotation-
based data augmentation, weight-based regularization per-
formed better on INbreast and ISIC, over 8% and 1.6% re-
spectively. The performance was slightly lower on the CBIS-
DDSM. The different margins of gains when comparing
rotation-based weight regularization with data augmentation,
suggest that dataset idiosyncrasies and model architectures
may have an impact on the final performance value. Interest-
ingly, when rotation-based weight regularization is present,
adding data augmentation leads to worse test set accuracy.
This is due to the fact that we increase the variability of the
training data, without adding any valuable information about
rotation-invariance.

E. Time Efficiency in Multiple Orientation Inference

As mentioned before, weight rotation is computationally
cheaper than image rotation which, for some applications,



Fig. 6: Time required to evaluate one batch of 120 images
when using weight rotation and input rotation.

can be a considerable advantage. To demonstrate this we
consider the common case where, at inference, the input
is rotated multiple times and the outputs of all orientations
combined for a more robust classification. In this section, the
models previously trained on ISIC and CBIS-DDSM were
used.

We verified that averaging the prediction for multiple ori-
entations leads to an increase in accuracy for both methods,
as long as the rotation method used for inference is the same
as that of training. For the ISIC dataset, weight rotation leads
to an increase from 80.00% to 82.54%, while rotation on the
image has a smaller effect, from 78.70% to 80.24%. Similar
results were obtained on CBIS-DDSM, with an increase from
60.24% to 62.29% for weight rotation, against 61.26% to
62.70% for image rotation. Combining the two methods of
rotation did not lead to higher accuracy in any model.

Regarding the computational cost, Fig. 6 shows the time
required for each model to perform inference on a set of 120
images with 16 orientations. The results shown were obtained
by averaging over 100 runs. Using weight rotation instead
of image rotation leads to a reduction of 21.2% of the time
required, for the Vgg16 model, and 37.3% for the Resnet-18
model. Although weight rotation increases the time required
to do model inference, this increase is small when compared
to the time necessary for input rotation. The reduced time at
inference is highly dependent on the model used, image size
and hardware. In this section we demonstrate this difference
for average-sized images and commonly used models. In this
work a GTX 1080 GPU along with an i7-6700k CPU were
used.

V. CONCLUSION

In this work we propose a regularization method based
on weight-rotation, which aims at increasing the robustness
of convolutional neural networks to changes in orientation
of the objects on the image. The method is well-suited
for rotation-invariant problems, but can also be useful for
rotation-variant ones. We also provide a detailed explanation
on the differences and similarities between the proposed
method and traditional rotation-based data augmentation,
along with empirical evaluation. As conclusion, rotation-
based weight regularization is a competitive alternative to
rotation-based data augmentation, which can be preferred in
some situations.
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