
Elastic Deformations for Data Augmentation in Breast Cancer Mass
Detection

Eduardo Castro1, Jaime S. Cardoso1,2 and Jose Costa Pereira1,3

{eduardo.m.castro , jaime.cardoso , jose.c.pereira} @inesctec.pt

Abstract— Two limitations hamper performance of deep
architectures for classification and/or detection in medical
imaging: (i) the small amount of available data, and (ii) the
class imbalance scenario. While millions of labeled images are
available today to build classification tools for natural scenes,
the amount of available annotated data for automatic breast
cancer screening is limited to a few thousand images, at best. We
address these limitations with a method for data augmentation,
based on the introduction of random elastic deformations on
images of mammograms. We validate this method on three
publicly available datasets.

Our proposed Convolutional Neural Network (CNN) archi-
tecture is trained for mass classification – in a conventional
way –, and then used in the more interesting problem of mass
detection in full mammograms by transforming the CNN into
a Fully Convolutional Network (FCN).

I. INTRODUCTION

Worldwide, breast cancer is the most lethal form of cancer
in women [1]. It is estimated that 1.7 million new cases and
520 thousand deaths happen due to it every year; making
it one of the biggest health concerns in modern society.
Similar to other forms of cancer, early detection is critical
for successful treatment. The National Cancer Institute (NCI)
states that when diagnosed in early stages, survival rates
are nearly 100%, unfortunately dropping to 22% for later
diagnosis [2]. One difficulty for early diagnosis arises from
the fact that, initially, breast cancer is asymptomatic. As such,
detection needs to be done through screening.

In mammograms, radiologists look for malignant lesions
– often subtle – with an eye for detail. The screening of
a large group of women substantially increases specialized
workload. This is aggravated in double reading scenarios,
which have been shown to yield better detection rates [3].
With this problem in mind, many algorithms have been
proposed by the scientific community to assist radiologists
during diagnosis, increasing early detection rates while also
reducing workload [4]. These Computer Aided Detection
systems traditionally work by first detecting, segmenting and
characterizing lesions using heuristic algorithms and then
classifying them using machine learning [5].

For detection and segmentation, approaches are often
based on the bright appearence of masses [6] or by detecting
object edges on the mammogram [7], [8]. Characterization is
usually done with a wide set of features related to intensity,
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morphology and generic texture descriptors [9]. For the
classification task, Support Vector Machines and Random
Forests are still widely used, but other classification tools
can be found [10].

The recent success of deep learning architectures in many
visual recognition tasks [11] has motivated researchers to fa-
vor these methods instead of the traditional CAD pipeline for
mammogram screening [9], [12]. These architectures include
feature learning and classification in a single framework, and
they can easily be adapted to perform detection and seg-
mentation. Rather than using heuristics, these architectures
work by minimizing a certain loss function that encodes the
classification error from a set of labeled samples.

In breast cancer detection, as in other medical imaging
applications, the number of healthy samples largely exceeds
that of unhealthy ones. If care is not taken this will lead to
biased models. Additionally, the cost of missing a malignant
mass is much higher than a false detection (predicting malig-
nant when in fact it’s benign, or no mass exists). Due to this,
CAD platforms tend to favor high sensitivity at the expense of
more false positives per image. On the other hand, it is well
established that deep learning models require a high number
of labeled examples. Otherwise they tend to under-perform
traditional classification methods. The relatively small size of
mammogram datasets (particularly in unhealthy cases) and
the general scarcity of labeled data in this area, makes it hard
to train good deep learning models for mass detection.

To counter the effect of the small number of available
samples, data augmentation techniques (e.g. rotations, scaling
or translations) are often used. In this work, we explore a new
technique of elastic distortions. The rationale of using this
type of data augmentation is as follows. Because the breast
is a non-rigid object which is stretched before the X-ray, the
same breast can appear with slightly different appearance
in different exams due to different stretching. As such, one
can artificially introduce similar small elastic distortions to
create new artificial samples that are physically plausible. We
also propose a new Convolutional Neural Network (CNN)
topology to show that elastic distortions on mammograms
can significantly improve mass detection performance on
CAD systems.

Our contributions in this manuscript are thus two-folded:
(i) a new architecture for mass classification inspired in the
VGG model of [13], and (ii) a data augmentation strategy
using elastic deformations motivated by the nature of breast
lesions, and the scarcity data for mass detection.



II. METHODOLOGY

In this section, we describe our proposed framework for
mass detection. We start by an overview of the prepro-
cessing and patch extraction tasks. Then, we proceed to
detail the proposed network topology and the adopted data
augmentation strategy – based on elastic deformations of the
mammograms. We conclude with an end-to-end overview of
the proposed mass detection method.

Preprocessing: mammogram images are first processed
to: (i) correct contrast by adaptive histogram equalization,
(ii) separate the breast tissue from the background, and (iii)
remove image artifacts (e.g. film boundary, watermarks). The
first step is used to reduce variability between images; a
contrast-limited adaptive histogram equalization (CLAHE)
is applied. Also, image size is reduced by a factor of 12,
using pixel area relation interpolation. In this method each
pixel’s intensity in the down-sampled image is set to the
mean of the corresponding region in the original image.
Resizing allows the overwhelming majority of lesions to
fit an input of size of (76 × 76), dramatically reducing the
required computational power. Finally pixel intensity range is
centered around zero by remapping intensities linearly to the
range [−0.5, 0.5] which provides numerical stability during
training [14]. Second, the image region containing tissue
(ROI) is separated from the background using morphological
filtering, image subtraction and thresholding; similar to [15].
Additionally, we only keep the binary object with the largest
area and perform a dilation to guaranty the whole breast is
inside the ROI. Pixels in the mammogram outside this region
are set to zero, which eliminates most of the digitization
artifacts.

Patch extraction: traditional data augmentation involves
rotations, mirroring and translations. For rotation and mir-
roring, parameters are an angle in the range [0, 2π[ and a
boolean value, respectively. The full image is rotated (mir-
rored) and patches of fixed-size – (76× 76) – are collected
from the rotated (mirrored) mammogram. Translations are
added by collecting multiple nearby patches for each lesion.
The full-scheme for data augmentation based on elastic
deformations of the mammogram is detailed in Section II-B.
For each lesion, a total of 9 positive patches centered in the
red dots are collected, see Figure 1. Negative patches are
collected by grid sampling the image with a fixed-step equal
to 50% of the patch length. Their centers are represented by
the blue dots of Figure 1.

A. Convolutional Neural Networks

The neocognitron [16], proposed in the 80’s by
Fukushima, triggered the development of Convolutional Neu-
ral Networks, a broader class of networks that have became
a mainstream tool for visual recognition tasks. They model
data using a composition of relatively simple functions called
layers and parameterized by weights. The same model can
solve many different tasks as long as a “good” set of weights
can be found; usually through an optimization process called
learning.

Fig. 1: Selected points for patch extraction. Blue and red
dots indicate negative and positive patch centers, respectively.
Red square indicates the lesion bounding box. Green square
indicates patch size.

In this work a new architecture is proposed, inspired in
the design principles described by Simonyan and Zisserman
in [13]. All filters are 3×3 and the depth varies depending on
the position of the layer within the network. Rectifier Linear
Units (ReLU) are used after each convolutional layer, which
have been shown to decrease the overall training time, while
increasing the network’s discriminative power [17]. Weight
initialization is done as proposed by Gorot and Bengio
in [18]. For training, categorical cross-entropy is minimized
using Adam [19], a gradient descent algorithm which in-
cludes momentum and an adaptive learning rate for each
variable. In practice these properties reduce the importance
of weight initialization and hyper-parameter optimization in
the final solution, while also allowing a faster convergence.

The ultimate goal is to obtain a probability map that
emphasizes the regions of a mammogram that are more likely
to have a lesion. We formulate this detection problem as a
classification one. First, a CNN patch classifier is trained in
a conventional way. This patch classifier is then transformed
into a fully convolutional network , which classifies the
whole image in one forward pass and outputs the same
numerical result as screening with the patch classifier in a
sliding window fashion, while taking much less time. The
transformation is done by operating three changes in a layer-
wise fashion. (1) The input layer is made bigger to fit a whole
mammogram. (2) For max-pooling layers, the (2 × 2) filter
is applied to four copies of the image starting at different
pixel locations – {(0, 0); (0, 1); (1, 0); (1, 1)} (as in [20]).
(3) Dense layers are implemented as convolutional ones by
reshaping weights and operations (as in [21]). A schematic
with the proposed detection method is shown in Figure 2.
The upper part of the diagram focuses on the patch-based
training architecture, while the lower half emphasizes the
changes made for inference on full mammograms.

B. Elastic Deformations

In a continuous body, a deformation results from a stress
field induced by applied forces1. If the deformation recovers
after the stress field has been removed the deformations
are called elastic. This phenomena can realistically occur in

1changes in the temperature field can also cause deformations, but they
are out of scope of the current application.
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Fig. 2: Overview of the proposed framework. Numbers on top of layers correspond to either number of filters (convolutional
layers) or neurons (dense layers). Numbers at the bottom correspond to the filter size of the convolutional layers.

breast cancer screening. For each exam, a slightly different
stretch is applied due to the position of the breast and the
strength used in the compression. As such, the same breast
observed in two different screenings may have different
appearances, which should not influence the decision of
whether a lesion is present or not. Elastic deformations as a
data augmentation technique, therefore, comes naturally as a
method to model these variations.

(a) Original (b) Deformed

Fig. 3: Effects of performing elastic deformation on a mam-
mogram.

In CNNs, these transformations have been used for data
augmentation in handwritten digit recognition tasks [22]. To
the best of our knowledge, this is the first work that uses
elastic deformations to generate synthetic samples of cancer
masses. Recognizing that breast tissue is not a rigid-body –
and as such is subject to deformations – is a stepping stone
that makes way for alternative methods of data augmentation.
The synthetic samples are used to artificially increase the data
available for training.

Obtaining a deformation on a mammogram image is done
in two parts. First a random stress field is generated for the
horizontal and vertical directions, ∆x, and ∆y respectively.
For each pixel and direction, a random value in the range
of α × [−0.5, 0.5] is uniformly picked. To ensure close
pixels have similar displacement the resulting horizontal
and vertical images are applied a Gaussian filter separately
(eq. (1) and (2)). These transformations have two parameters:

the maximum value for the random initial displacement (α)
and the strength of the smoothing operation, given by the
standard deviation of the Gaussian filter (σ). We set these
to be α = 300 and σ = 20, based on the resulting patches
appearance. After this, the stress field is applied to the image,
the breast segmentation mask and mass annotations. This is
done by moving each pixel to a new position (eq. (3)) and
using spline interpolation of order one to obtain intensities
at integer coordinates. An example of the effects of such
deformation is show in Figure 3.

∆x = G(σ) ∗ (α×Rand(n,m)) (1)
∆y = G(σ) ∗ (α×Rand(n,m)) (2)

Itrans(j+∆x(j, k), k + ∆y(j, k)) = I(j, k) (3)

In the equations above, I and Itrans are the original and
transformed images, respectively; and n ×m are the mam-
mogram dimensions.

C. End-to-end mass detection

In this section, we briefly sketch the proposed method
end-to-end. From training (on patches) to inference (on full
mammograms).

A network similar to the one shown in Figure 2 is trained
using patches of masses and normal breast tissue. These
are extracted as described in the beginning of Section II.
Balanced batches of positive and negative images are fed to
the classifier. Due to the existing imbalance, the model will
repeat positive cases much more frequently than negative
ones. We use data augmentation on the positive class to make
its samples different from the originals.

During inference: (1) by transforming the trained net-
work into a FCN, we obtain, for each test mammogram,
a probability map that indicates a prediction of whether
a lesion is present in each area of the exam image; (2)
the resulting probability map is thresholded, with a value
(≈ 0.5) depending on the dataset; (3) from the resulting
binary image, small objects are removed via morphological
opening; and finally (4) predicted lesion detections are the
regions that survive the previous step. Bounding boxes are
obtained for each region, and are evaluated against ground-
truth annotations.



III. EXPERIMENTS

There are two sets of experiments. First, using the pro-
posed CNN architecture we compare two strategies for data
augmentation: traditional vs. elastic deformations. For this,
40 transformations of each image are computed before train-
ing. Second, we compare the performance of our proposed
CNN architecture against state-of-the-art methods.
A. Datasets

We make use of three publicly available datasets summa-
rized in Table I.

INbreast [23] is composed of high quality full-field digital
(FFD) mammograms of both healthy and unhealthy patients
as well as detailed lesion annotations. Because INbreast does
not a have a standard train/test split, we use stratified five-
fold cross validation with a proportion of 80/20% (train/test)
for a more robust measure of performance.

CBIS [24] is a Curated Breast Image Subset of
DDSM [25], provided by The Cancer Imaging Archive [26]
divided in a fixed train/test split. In particular: questionable
cases were removed, images were standardized to the DI-
COM format, and lesion annotation was improved.

BCRP [25] is a fixed split (train/test) of the most chal-
lenging cases from DDSM [25].

Important to note that in the case of CBIS and BCRP,
images were obtained by digitizing mammograms that were
originally on film. This results in lower quality samples when
compared to the FFD mammograms of INbreast. Both BCRP
and CBIS are divided into masses and calcifications. We only
use the former set of images.

TABLE I: Dataset summary used in the experiments.

Cases Images Masses

train test train test train test

INbreast 108 410 116

CBIS 691 201 1231 361 1318 378

BCRP 39 40 156 160 84 87

B. Detection and Evaluation

At inference time, the full image (mammogram) is for-
ward propagated through the FCN to obtain a probability
map which is then thresholded and filtered. Isolated blobs
are counted as detections. At this stage there is no data
augmentation. Following common practice, the true positive
(TP) criterion is met when the intersection over union (IoU)
of the mass’s bounding box and prediction bounding box is
greater then 0.2. Region-based analysis is done by means of
the Free Response Operating Characteristic (FROC) curve.
This plots the true positive rate (TPR, or sensitivity) as a
function of the number of false positives per image (FPI).
The curves for the two data augmentation strategies for CBIS
and BCRP are shown in Figure 4.

C. Results

FROC curves are summarized in Table II for TPR levels
of 80% or 60% depending on the dataset. In the case of
the BCRP, a more challenging dataset, a threshold of 0.6

Fig. 4: FROC curve, showing sensitivity vs. number of false-
positives per image. Top - CBIS; Bottom - BCRP

was required to avoid multiple detections being connected
in the thresholded image and thus considered as a single
one. We also used a TPR of 60%, as a TPR of 80% is still
not attainable by any CAD system that we are aware of.
Comparison between our elastic deformation strategy and a
traditional data augmentation method can also be seen in
Figure 4 for different levels of FPI.

TABLE II: Number of false-positives per image (FPI) mea-
sured at 80% sensitivity (TPR) for “INbreast” and “CBIS”,
and at 60% for the more challenging “BCRP”.

INbreast [23] CBIS [24] BCRP [25]

TPR FPI TPR FPI TPR FPI

elastic 0.8 1.171 0.8 3.509 0.6 1.864
benchmark 0.8 0.912 0.8 5.757 0.6 3.047

thres. 0.5 0.5 0.6

Data augmentation: even-though the strategy based on
elastic deformations is not a winner across-the-board, it
is worth noting that in the cases where it does perform
better – CBIS and BCRP datasets –, for the same level of
sensitivity the number of FPI drops ≈ 40% when compared
to FPI achieved by traditional data augmentation (i.e. denoted
“benchmark” in Table II).

CNN architecture: When used together with the elastic
deformation strategy for data augmentation, the proposed
CNN compares competitively with other known methods.
Table III summarizes the best reported results for the public
datasets used in these experiments. In particular, for the IN-



breast dataset, the recent work of Dhungel et al. [12] achieves
impressive sensitivity (0.96± 0.03) values for a comparable
number of FPI. We note however their framework is based
on a much more complex pipeline that includes deep-belief
networks, Gaussian mixture models, a cascade of R-CNN
and a cascade of random forests. When compared to more
traditional methods [27], [28] we see that our deep learning
approach presents much less FP per image. However, a TPR
of 0.7 was not achieved in the BCRP dataset.

TABLE III: Comparison to other methods, including known
state-of-the-art for benchmark datasets.

INbreast [23] CBIS [24] BCRP [25]

TPR FPI TPR FPI TPR FPI

[12]
0.96 ±0.03 1.2

-
0.75 4.8

0.87 ±0.14 0.8 0.70 4.0

[27] 0.8 2.5 - -

[28] - - 0.70 8.0

elastic 0.8 1.171 0.8 3.509 0.6 1.864

IV. CONCLUSIONS
During a real-life screening, different views of the same

breast can be obtained from the application of different
compression forces. This however should not change the
outcome of screening. In this paper we aim at augmenting the
training data by simulating this phenomena. The extensive
experimental results using elastic deformations show that
this data augmentation technique can be used to improve
performance of CNN models in mass detection. Another
strategy that we are currently studying, is to perform elastic
deformations at the patch level. Perhaps less intuitive, this
strategy does have the potential to generate masses with a
finer-level of detail. Additionally, other types of stretching
could be considered.
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